Overview

- What is fatigue?
- What is the natural history of chronic fatigue states?
- What is the biological basis of chronic fatigue?
 - Acute sickness response and genetic studies
- How can chronic fatigue states be treated?

What is fatigue?

- Fatigue as a ‘sign’:
 - failure of force generation in the muscle
 - physiological or pathological
 - peripheral and central components
- Fatigue as a ‘symptom’:
 - everyday phenomenon
 - disease associated (infective, inflammatory, neurological, mood disorder,…)
 - ‘physical’ and ‘mental’ components

What is chronic fatigue syndrome?

- Unexplained, persistent or relapsing fatigue, that is:
 - of new, definite onset
 - not due to exertion
 - not relieved by rest
 - associated with a substantial reduction in daily activities
- Four or more of:
 - impaired short term memory or concentration
 - sore throat
 - tender lymph nodes
 - muscle pain
 - joint pain
 - headaches
 - unrefreshing sleep
 - post-exertional malaise
- Exclusion of medical and psychiatric disorders

What is post cancer fatigue?

- Significant fatigue, diminished energy, or increased need to rest, disproportionate to any recent change in activity level
- Five or more of:
 - Complaints of generalised weakness or limb heaviness
 - Diminished concentration or attention
 - Decreased motivation or interest in engaging in usual activities
 - Insomnia or hypersomnia
 - Experience of sleep as unrefreshing or nonrestorative
 - Perceived need to struggle to overcome inactivity
 - Marked emotional reactivity (e.g. sadness, irritability)
 - Difficulty completing daily tasks
 - Perceived problems with short-term memory
 - Post-exertional malaise lasting several hours

Can chronic fatigue be measured?

“Neurophysiological” fatigue: a failure of force generation in the muscle

What is the natural history of chronic fatigue states?

- Post-infective fatigue - Dubbo Infection Outcomes Study (DIOS)
 - Prospective cohort study (n=512)
 - Epstein-Barr virus, Rose River virus, Q fever

- Post-cancer fatigue - Follow-up after cancer study (FOLCAN)
 - Prospective cohort study (n=281)
 - Early stage breast cancer, adjuvant therapy

What is the biological basis of chronic fatigue states?

Chronic fatigue is:
- prevalent (~200/100,000)
- disabling
- costly

Chronic fatigue is not:
- a muscle disorder
- a psychiatric disorder
- an active infection
- an immunological disorder
- a sleep disorder
- a hormonal disorder
- a metabolic disorder
- …

Determinants of illness duration

Chronic fatigue is:
- prevalent (~200/100,000)
- disabling
- costly
Acute sickness response to infection

- Stereotyped symptom set associated with infection or inflammation:
 - fevers, sweats, musculo-skeletal pain,
 - neurocognitive difficulties, anorexia, hyperalgesia
 - social withdrawal, mood disturbance
- Immunologically (cytokine)-triggered
 - animal studies
 - cytokine administration in humans
 - correlative studies in natural infection
- Neurologically-mediated

Cytokine production and acute sickness response

<table>
<thead>
<tr>
<th>Reported Symptoms</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>0.30</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Malaise</td>
<td>0.25</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Anorexia</td>
<td>0.25</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Hypoalgesia</td>
<td>0.25</td>
<td>0.50</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Genetic risks for severe and prolonged fatigue

- High illness severity: interferon gamma (IFN-\(\gamma\)) +874 T/A (\(p=0.004\))
 - Odds ratio (OR): T allele 2.5; TT genotype 2.9
- Low illness severity: interleukin-10 (IL-10) -592 C/A (\(p=0.03\))
 - OR: CC genotype 1.9
- High illness severity and combined genotype (IFN-\(\gamma\) TT / IL-10 CC) (\(p=0.001\))
 - OR: TT/CC 6.8

How should chronic fatigue be treated?

Double-blinded placebo controlled trials (n=100)

- Antivirals:
 - acyclovir
 - valganciclovir
- Immunological agents:
 - transfer factor
 - intravenous immunoglobulin
 - corticosteroids
 - Ampliten (poly-I-poly-C)
- Vitamin:
 - vitamin B12
 - co-enzyme Q10

Anti-depressants:

- moclobemide
- fluoxetine
- phenelzine
- selegiline

Metabolic agents:

- fluocortisone
- magnesium sulphate

Centrally-active agents:

- galphentra
- modafinil
- L-carnitine
How should chronic fatigue be treated?

- Level 1 evidence for graded exercise therapy (GET) and cognitive behavioural therapy (CBT)

Structure of UNSW Fatigue Clinic program

Outcomes of UNSW Fatigue Clinic program (n=264)

Fatigue severity

Physical function

Mood disturbance

Social functioning

Outcomes of UNSW Fatigue Clinic program (n=264)

Clinic education program for CBT / GET

- Knowledge and skills gap amongst key providers
- Online clinician assessment and training program
- Randomised trial for allied health practitioners
 - Wait list versus online eLearning
 - Before and after assessment:
 - self-reported confidence in knowledge of chronic fatigue
 - self-reported confidence in clinical diagnostic skills
 - MCQ and short answers on case vignettes
 - CPD accreditation
- ‘Open label’ access for GPs, nurses
 - Assessments (45 minutes)
 - Education (~5 hours)
 - https://aelp.smartsparrow.com/v/open/w1aweeta
- Information / advice
 - fatigueclinic@unsw.edu.au

Acknowledgements

Collaborators

- Ian Hickie (Brain & Mind Research Institute, USyd)
- Denis Wakefield (UNSW)
- David Goldstein (Dept. Medical Oncology, POWH)
- Ute Vollmer-Conna (School of Psychiatry, UNSW)
- Carolina Sandler (UNSW Fatigue Clinic)

Funding

- NHMRC
- Centers for Disease Control, USA
- Komen Foundation, USA
- Mason Foundation