I am a “new age” radiologist

I run consulting rooms and public clinics for neurovascular patients and admit and treat patients in public and private

I am partner in a radiology practice where I report complex neurovascular imaging and perform spinal injections for pain

Dr Jason Wenderoth
Head of Interventional Neuroradiology
Prince of Wales and Liverpool Hospitals
Conjoint Senior Lecturer, UNSW
Sydney

Appointments/queries: info@snis.com.au
Imaging/spinal injections: (02) 9399 5357

CEREBROVASCULAR DISEASES

Learning objectives

- Pathology/pathophysiology, epidemiology
 1. Know the aetiology/pathogenesis of common neurovascular diseases
 2. Know the incidence/prevalence of common neurovascular diseases

- Investigation
 1. Know the common clinical presentations of neurovascular diseases
 2. Know the appropriate tests for suspected neurovascular diseases
 3. Know the ancillary investigations required in management of neurovascular diseases

- Evidence-based diagnosis and management
 1. Know the main publications supporting modern treatment of neurovascular diseases
 2. Know the main treatment methods for neurovascular diseases

Questions...

TRUE OR FALSE:

In the setting of carotid atheroma, ischaemic stroke is most commonly due to reduced cerebral perfusion.

Questions...

WHICH OF THE FOLLOWING IS NOT AN APPROPRIATE URGENT INVESTIGATION FOR ACUTE ISCHAEMIC STROKE:

a. Duplex ultrasound of the carotid arteries
b. CT brain
c. CT angiogram of the arch/COW

Questions...

STANDARD OF CARE FOR ACUTE ISCHAEMIC STROKE DUE TO LARGE VESSEL OCCLUSION IS:

a. Heparin infusion + stroke unit care
b. rt-PA infusion + stroke unit care
c. Endovascular clot retrieval +/- rt-PA infusion
COMMON SYMPTOMS/SIGNS OF POSTERIOR CIRCULATION ISCHAEMIA INCLUDE:

a. “Crossed paresis”, dysconjugate gaze, ataxia
b. Expressive dysphasia, apraxia, gaze deviation
c. Decreased LOC, pseudobulbar palsy, headache

INDEPENDENT PATIENT OUTCOMES IN GOOD-GRAGE ANEURYSMAL SUBARACHNOID HAEMORRHAGE ARE SIGNIFICANTLY BETTER WITH:

a. Conservative (medical) management
b. Open microneurosurgical clipping of aneurysm
c. Endovascular repair (coiling) of aneurysm

WITHOUT TREATMENT, REBLEEDING FROM RUPTURED INTRACRANIAL ANEURYSM OCCURS IN:

a. 1% at 30 days
b. 90% at 30 days
c. 30% at 30 days

SMALL (<7mm) UNRUPUPTURED ANEURYSMS IN THE ANTERIOR CIRCULATION:

a. Usually double in size every 5 years on average
b. Have a very high (>20% per year) bleeding risk
c. May be managed conservatively in most cases

PULSATILE TINNITUS

a. Is a common symptom of brain AVM
b. Is a common symptom of Menière’s Disease
c. Is a common symptom of dural arteriovenous fistula

Overview

Common neurovascular diseases
 - Stroke
 - Ischaemic (85%)
 - Haemorrhagic (15%)
 - Other
 - Shunts
 - Arteriovenous malformation (AVM)
 - Dural arteriovenous fistula (DAVF)
 - Tumours
Overview
- Management of neurovascular disease
 - Medical
 - Open surgical
 - Endovascular (Interventional Neuroangiology)

Stroke - ischaemic
- 85% of all stroke
- 2nd leading cause of death and disability in Australia
- Leading cause of permanent dependency in Australia
- Causes
 - Cardioembolic 60%
 - Atheroembolic 20%
 - Carotid/vertebral 15%
 - Aortic arch 5%
 - Dissection/hypoperfusion ~1%
 - "Cryptogenic" ~20%

Stroke - ischaemic
- Cardioembolic stroke – causes
 - Atrial fibrillation or "atrial cardiopathy"
 - Patent foramen ovale
 - Myocardial infarction (hypomobile segment(s))
 - Bacterial endocarditis

- Atheroembolic
 - Carotid atheroma
 - Arch/vertebral origin atheroma
 - Intracranial atheroma

Stroke - ischaemic
- Clinical presentation
 - TIA – warning sign!
 - Focal deficit (including amaurosis) resolving in <24h
 - Must be treated as a medical emergency like "brain angina"
 - 15-25% will progress to major stroke within 2-4 weeks
 - Must admit and investigate
 - Usually a sign of unstable/ulcerated/embolic/embolic carotid plaque
 - TIA workup:
 - MRI and MRA brain – diffusion to look for acute ischaemia
 - CT angiogram aortic arch to COW – evaluate extracranial circulation
 - EEG/rhythm monitoring

Stroke - ischaemic Sx and signs
- Anterior circulation:
 - Contralateral hemiparesis/monoparesis/facial droop
 - Slurring of speech (non-dominant)
 - Dysphasia (expressive/receptive/mixed – dominant hemisphere)
 - Eye deviation (toward the affected hemisphere)
 - Contralateral sensory loss, sensory inattention/neglect
 - Hemianopia
 - Somnolence, vomiting, seizure (in large vessel occlusions)
Stroke – ischaemic Sx and signs
- Posterior circulation
 - Decreased level of consciousness
 - “Crossed” paresis – ipsilateral face, contralateral body
 - Quadriplegic or “locked in syndrome”
 - Impaired gag, swallow
 - Dysconjugate eye movements, diplopia
 - Arrhythmia, respiratory impairment
 - Seizure
 - Ataxia
 - Vomiting

Stroke – Investigations
- Urgent – immediate diagnosis is crucial
- Ischaemic tissue loses 2M neurons/minute
- Purpose of investigations:
 1. Establish diagnosis of ischaemic stroke
 2. Identify/exclude large vessel occlusion (LVO)
 3. Identify salvageable brain tissue
 4. Identify cause of stroke
 - Carotid disease
 - Arch atheroma
 - Other

Stroke – Investigations
- First line in suspected AIS is non-contrast CT head
 - Excludes haemorrhage
 - May identify LVO
 - Shows obviously infarcted tissue
- Same visit: CT angiogram arch-to-COW
 - Confirm/exclude LVO
 - Demonstrate source of embolus
 - Assist interventionist and neurologist in planning management

Stroke – Investigations
- In large stroke centres, CT-perfusion can be obtained at same time as CT angiogram
 - May delineate infarcted tissue
 - May demonstrate “penumbra” of salvageable but ischaemic brain

Stroke – Treatment
- Until mid-1990s, treatment of AIS focused on
 - preventing further stroke
 - avoiding complications (DVT, pneumonia)
 - promoting rehabilitation
- Late 1990s to 2000s
 - PROACT-I and II trials
 - rt-PA infusion became standard of care
 - Within 3-4 hours of stroke onset
 - Improved independent outcomes to 25-30%
 - Cerebral haemorrhage risk in 14-17%

Stroke – Treatment
- Late 2000s
 - Interventional techniques – experimental
 - Clot retrieval devices (MERCI, Solitaire)
 - IMS-III trial – endovascular vs rt-PA
 - Stopped in 2010 for futility
 - Flawed trial:
 - 4/434 patients had stent-retriever technology used
 - No requirement to prove vessel occlusion on imaging
 - Delayed management in many patients in trial
 - New trials devised to assess modern imaging and revascularisation techniques vs rtPA alone.
Stroke – Treatment

- **Trials and meta-analyses showed:**
 - Patients with large vessel occlusion (LVO) do significantly better with endovascular clot retrieval (ECR) as measured with 90 day mRS
 - ECR is cost-effective
 - Older patients (>80) do as well or better
 - ECR is effective to at least 6 hours (recent trials – DAWN – show benefit to 24h)
 - NNT for ECR is 2.5-3 (cf PCI for heart 20-35)

- **After CT/CTA/CTP…**
 - Patient taken as quickly as possible to DSA
 - GA or conscious sedation
 - Femoral artery access
 - Affected territory (RICA, LICA, VA) selected
 - Angiograms performed – demonstrate/locate occlusion
 - Intracranial access with microcatheter/wire
 - Deploy stent-retriever +/- aspiration catheter
 - Retrieve embolus

- **Case example**
 - 1430 – telephone call from stroke registrar at Wollongong Hospital to duty INR at POW
 - 51F, D1 post TKR
 - LS&W@1300h
dense left face/arm hemi + eye deviation, neglect and GCS 11.
 - NIHSS 19.
 - CTA – R M1 occlusion.
 - Weather damage to WH helipad; heavy traffic on highway and in South Sydney; thunderstorm moving through Sydney

 - 1520: patient transported by road ambulance; liaison between road and chopper to handover at nearest open space.
 - Patient handed over to chopper 1555h, 50km south of Sydney
 - DSA lab given 20-minute warning – prep commences
 - Patient arrives at POWH helipad 1615h
Case example

- Equipment prep completed 1620
- Patient enters room 1625; on DSA table 1627
- 9F CFA access and invasive pressure monitoring established 1630
- Rapid sequence GA complete 1635
- Embolectomy complete 1655
 - Solumbra pass 1 unsuccessful
 - Solumbra pass 2 successful

Stroke – Treatment

- Procedure typically takes 30-40 minutes from arrival in DSA to groin closure
- POW/Liverpool ECR service – 20-30/month
- Research opportunities available!

Stroke – Haemorrhagic

- Common
 - Hypertensive lobar/ganglionic bleed (50-60%)
 - Aneurysmal subarachnoid haemorrhage (25-30%)
- Rare
 - Arteriovenous malformation (AVM)
 - Cavernoma
 - Dural arteriovenous fistula (DAVF)

Aneurysms

- Aneurysmal subarachnoid haemorrhage (aSAH)
 - 8/100,000 incidence in Australia
 - Peak in 5th-7th decades
 - F:M = 2:1
 - Principal risk: smoking; 5% familial
 - 20% of aneurysm patients have >1 aneurysm
 - 10-15% mortality at ictus
 - Untreated, 30% will rebleed by 30 days & 60% will be dead at 6 months
 - Each rebleed carries 50% mortality
Multiple aneurysms
- Occur in 20% of patients
- Which has ruptured?
 - CT blood pattern
 - Localising clinical signs
 - Aneurysm size and shape
- When in doubt, treat the largest first
- If time, treat as many as can be safely treated at one sitting

Aneurysms

Aneurysmal subarachnoid haemorrhage (aSAH)
- Clinical symptoms
 - LOC
 - “Thunderclap” headache
 - Meningismus – headache, N/V, photophobia, neck stiffness
 - Focal deficit (esp IIIIn palsy)
- Imaging
 - Non-contrast CT brain
 - >98% sensitive and specific for SAH in 1st 24 hours
 - Falls to 57% by 10 days
 - Excludes focal haematoma with mass effect
 - Obstructive hydrocephalus
 - CT angiography – to locate aneurysm and characterise for treatment planning.

Aneurysms - unruptured
- Usually incidentally discovered
- Risk of treatment vs risk of rupture
- Generally, anterior circulation aneurysms <7mm have a low rupture risk and can be managed conservatively
- Aneurysms >7mm and most posterior circulation aneurysms should be considered for treatment
- Higher risk in patients with previous SAH or ≥2 first degree relatives with aSAH.

Aneurysms

Treatment
- Microneurosurgical clipping
 - Craniotomy and open exposure of aneurysm
 - Dissection around aneurysm neck
 - Clip placed across neck
- Endovascular occlusion
 - Percutaneous arterial access (usually common femoral)
 - Microcatheter advanced into aneurysm
 - Aneurysm packed with platinum coils

International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion

Andres P. Churly, MD, 1,2 Rafael Ayala, MD, 1,2 Yi-Min Liu,3,4 Wei-Ping Yan,3,4 Italo Della Corte, MD, 3,4 Mary Moodie,5,6 Susan Vennk,5,6 Peter Sandercock,5,6 on behalf of the International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group

7.6% absolute benefit for coiling over clipping at 12 months, maintained in the group of coiled patients in the 15 years since publication
Aneurysms

- Endovascular therapy and aneurysm morphology
 - “simple” coiling where the aneurysm neck is narrow compared with the sac
 - Balloon or stent-assisted coiling where aneurysm neck is broad
 - In some cases, “flow-diverting” stents can be used without coils

The Procedure

- Microcatheeterise aneurysm
- “Frame” aneurysm with first coil
- “Fill” aneurysm with smaller and smaller coils
- “Finish” aneurysm with very soft coils
- Post-coiling angiograms

The Procedure

- Stent-supported coiling
 - Deliver stent across neck of aneurysm
 - Catheterise aneurysm through stent struts
 - Coil aneurysm
35 m – worsening quadriplegia

38 f – bilateral III palsy

63 f – left III, IV, VI and V2 palsy
Arteriovenous Malformation (AVM)

- Dysplastic arrangement of pial arteries and veins with direct A-V connections through a "nidus" of abnormal, thin-walled vessels and no intermediary capillary bed
- Prevalence of 2-3/100,000
- M=F
- Usually present in 4th-6th decades
 - Haemorrhage
 - Seizure
 - Progressive deficit

Diagnosis
- MRI – evidence of prior bleed; vessels on MRA; shunting on TR-MRA
- CT – acute haemorrhage; vessels on CE-CT or CTA; calcification in nidus
- DSA – nidus, AV-shunting

Grading: based on size of nidus, eloquence of adjacent cortex and venous drainage (deep or superficial) – Spetzler-Martin system
- Nidal size:
 - <3cm – 1
 - 3-6cm – 2
 - >6cm – 3
- Elocuence of cortex
 - Non-eloquent - 0
 - Eloquent (ie motor, primary sensory, speech) – 1
- Venous drainage
 - Superficial – 0
 - Deep – 1
- Add scores to get Spetzler grade
Arteriovenous Malformation (AVM)

- **Treatment**
 - Surgery
 - Radiosurgery
 - Embolisation
 - Combinations – E + S, E + R, E + R + S etc

- **Grade vs preferred treatment modality**
 - Grades 1-2: generally surgery preferred
 - Grades 3-5: radiosurgery or combination therapy

Dural Arteriovenous Fistula (DAVF)

- **Rare** – incidence 1-2:100,000 per year

- **Presentation**
 - Pulsatile tinnitus
 - Pulse-synchronous bruit
 - Proptosis/chemosis (cavernous sinus DAVF)
 - Headache
 - Dementia
 - Progressive deficit
 - Haemorrhage (parenchymal, SAH or SDH)

Dural Arteriovenous Fistula (DAVF)

- **Diagnosis**
 - Often difficult due to wide range of clinical features
 - **CT/MR**
 - Distended leptomeningeal veins
 - Abnormal enhancement of sinuses
 - Distended superior ophthalmic vein (cavernous lesions)
 - **Shunting on TR-MRA**
 - **DSA**
 - AV-shunt from ECA branches to dural sinuses
 - Occipital/asc. Pharyngeal/MMA aa to TS/SS/SSS
 - IMAX to CS
 - Retrograde leptomeningeal venous drainage

Dural Arteriovenous Fistula (DAVF)

- **Grading** – reflects risk of haemorrhage and depends on
 - Antegrade or retrograde flow in dural sinuses
 - Presence or absence of reflux into leptomeningeal veins (RLVD)
 - Presence or absence of distension of leptomeningeal veins

- **The most dangerous lesions** have retrograde sinus flow, RLVD and distended leptomeningeal veins, with up to 40% annual haemorrhage risk

Dural Arteriovenous Fistula (DAVF)

- **Treatment**
 - Surgery
 - Cranotomy and disconnection of dural arterial supply and connections between sinus and leptomeningeal veins
 - Radiosurgery – rarely used
 - Embolisation
 - Mainstay of treatment
 - Until 2003, particles, coils, glue injected into feeding arteries with limited success; coil sacrifice of draining sinus effective when possible
 - After 2003, transarterial injection of DMSO-based liquids has become the mainstay of treatment
68 m – obtunded and worsening dementia

52F; subarachnoid haemorrhage
No transvenous access; multiple shunt points

67F; proptosis, chemosis, headache
No transvenous (IPS) access; multiple shunts from both ICAs and ECAs
Questions...

TRUE OR FALSE:

Ischaemic stroke is most commonly due to reduced cerebral perfusion due to carotid stenosis

FALSE

Questions...

WHICH OF THE FOLLOWING IS NOT AN APPROPRIATE URGENT INVESTIGATION FOR ACUTE ISCHAEMIC STROKE:

a. Duplex ultrasound of the carotid arteries
b. CT brain
c. CT angiogram of the arch/COW

Questions...

STANDARD OF CARE FOR ACUTE ISCHAEMIC STROKE DUE TO LARGE VESSEL OCCLUSION IS:

a. Heparin infusion + stroke unit care
b. rt-PA infusion + stroke unit care
c. Endovascular clot retrieval +/- rt-PA infusion

Questions...

COMMON SYMPTOMS/SIGNS OF POSTERIOR CIRCULATION ISCHAEMIA INCLUDE:

a. "Crossed paresis", dysconjugate gaze, ataxia
b. Expressive dysphasia, apraxia, gaze deviation
c. Decreased LOC, pseudobulbar palsy, headache

Questions...

INDEPENDENT PATIENT OUTCOMES IN GOOD-GRADE ANEURYSMAL SUBARACHNOID HAEMORRHAGE ARE SIGNIFICANTLY BETTER WITH:

a. Conservative (medical) management
b. Open microneurosurgical clipping of aneurysm
c. Endovascular repair (coiling) of aneurysm
WITHOUT TREATMENT, REBLEEDING FROM RUPTURED INTRACRANIAL ANEURYSM OCCURS IN:

a. 1% at 30 days
b. 90% at 30 days
c. 30% at 30 days

SMALL (<7mm) UNRUPTURED ANEURYSMS IN THE ANTERIOR CIRCULATION:

a. Usually double in size every 5 years on average
b. Have a very high (>20% per year) bleeding risk
c. May be managed conservatively in most cases

PULSATILE TINNITUS

a. Is a common symptom of brain AVM
b. Is a common symptom of Menière’s Disease
c. Is a common symptom of dural arteriovenous fistula

Appointments/queries - neurovascular:
Sydney Neurointerventional Specialists: info@snis.com.au

Neuroimaging/spinal injections:
Spectrum Medical Imaging: (02) 9399 5357

Research/Teaching:
Institute of Neurosciences, POWH: j.wenderoth@unsw.edu.au