Researchers Discover Potential Avenue to Treating Type 2 Diabetes at Early Stages

Researchers Discover Potential Avenue to Treating Type 2 Diabetes at Early Stages

Researchers at the Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a new potential target for drugs to prevent type 2 diabetes. A paper published today in the Journal of Clinical Investigation shows that blocking a cellular glucose sensor in muscle improves insulin responsiveness.

“Our new study shows that a protein called MondoA may serve as a key link between insulin resistance and accumulation of fat in muscle, which occurs in obesity-related diabetes,” said Daniel P. Kelly, M.D., professor and director of SBP’s Center for Metabolic Origins of Disease. “This study is the first step towards testing MondoA-targeted drugs to prevent type 2 diabetes in pre-clinical studies.”

About 8% of Americans have type 2 diabetes, and another 25% of the population is at risk because of obesity. Type 2 diabetes is a lifelong disease that represents an enormous public health burden, accounting for as much as 20% of all healthcare costs in the US. A significant proportion of those costs result from complications of diabetes, including damage to the kidneys, peripheral nerves, and retinas.

The precursor to type 2 diabetes is insulin resistance, in which insulin no longer causes the body’s cells to take up the glucose from a meal and use it for energy. This leads to diabetes because glucose continues to circulate in the blood, stimulating the pancreas to make more and more insulin, which eventually becomes so taxing that the insulin-producing cells die.

Kelly’s team focused on skeletal muscle because it’s the main insulin-responsive tissue in the body. An early marker of insulin resistance is the accumulation of fat in muscle, along with decreased import of glucose, so they examined whether these two processes are linked. To find a protein that regulates both, they screened thousands of molecules for their ability to block fat synthesis and enhance glucose uptake in muscle cells… Read More>>

Source: Medical Xpress

Send this to a friend