Gastroenterology

Dr David Palmer
Clinical Articles iconClinical Articles

The importance of eosinophils and neutrophils infiltrating oesophageal squamous epithelium as markers for reflux, eosinophilic oesophagitis, and infection are well entrenched, although traditionally less attention has been paid to lymphocytes. Small numbers of lymphocytes are normally seen in oesophageal epithelium including CD4 helper and CD8 positive cytotoxic lymphocytes. However, isolated increases in lymphocytes in the oesophageal epithelium, outside the context of entities such as lichen planus and graft versus host disease, have been less well recognised until recently. The criteria for a diagnosis of lymphocytic oesophagitis, where lymphocyte numbers are markedly increased with few or no eosinophils, is not strictly defined since this is still a reaction pattern and not a specific diagnosis per se, and thresholds vary from study to study. The strictest definition requires at least 50 intraepithelial or peripapillary lymphocytes per HPF with few or no granulocytes. The term lymphocytic oesophagitis was originally coined in 2005 by Rubio et al to describe a histological reaction pattern in the oesophagus of a series of 20 patients. The patients had a high number of peripapillary lymphocytes and a lack of neutrophils and eosinophils. The papillae are projections of lamina propria, containing capillaries, which project a short distance into the epithelium of the normal oesophagus. The pattern of lymphocytic oesophagitis showed an association with Crohn’s disease, though not a completely specific one. Of the 20 patients, 11 were age 17 or younger and of these, eight (40%) had Crohn’s disease; 20% had manifestations of reflux and the remainder a mixture of conditions including coeliac, gastroduodenitis, and Hashimoto’s thyroiditis. A similar study of 40 patients in 2008 was unable to confirm these findings. Looking at it from a different angle, Ebach et al studied 60 paediatric patients with known Crohn’s disease and control groups and found an association. Lymphocytic oesophagitis  which was found in 28% of patients with Crohn’s disease (mean age 13.3) but in only 2/30 patients with ulcerative colitis. A 2014 study of 580 paediatric patients confirms the association with Crohn’s disease, but also shows the non-specific nature of lymphocytic oesophagitis. This found 31 patients with lymphocytic oesophagitis and 49 with Crohn’s disease. Six of the 31 lymphocytic oesophagitis patients (19%) and 43 of the 514 non- lymphocytic oesophagitis patients (8.4%) had Crohn’s disease. The remaining lymphocytic oesophagitis patients had other diagnoses with no significant clinical correlates. Conversely, lymphocytic oesophagitis was identified in 12.2% of the patients with Crohn’s disease. Thus, there were still more lymphocytic oesophagitis patients without Crohn’s disease than with Crohn’s disease. In adults, the association with Crohn’s disease is not seen but there appears to be an association with oesophageal dysmotility. A 2011 study of over 129,000 patients from a large outpatient private GI pathology lab service revealed lymphocytic oesophagitis in only 119 patients, 60% female. Most patients had symptoms of oesophageal disease such as dysphagia or odynophagia, with dysphagia being the most common complaint, and around 20% complaining of reflux. Endoscopically, around a third of patients were suspected of having eosinophilic oesophagitis (including ‘feline oesophagus’ where the oesophagus has rings resembling that of a cat’s oesophagus), around 20% were normal, 18% had features suggestive of reflux, and 10% had stricture. However, none had Crohn’s disease or an association with Helicobacter gastritis. Although this study drew no firm conclusions as to the nature of lymphocytic oesophagitis in adults, the prevalence of dysphagia as a presenting complaint, and the number of patients with findings reminiscent of eosinophilic oesophagitis were noted. The association with dysmotility is enhanced by the finding that in adult patients, a lymphocytic oesophagitis with a complete absence of granulocytes was mostly seen in older female patients who presented with dysphagia and had an oesophageal motility disorder. CD4- and CD8-predominant lymphocytic oesophagitis occurs with roughly equal frequency. However, patients with CD4-predominant lymphocytic oesophagitis are more likely to be female (71%), and have a motility disorder (90% of those tested). This suggests a new entity of ‘dysmotility lymphocytic oesophagitis’. In summary, the reaction pattern of lymphocytic oesophagitis appears to be real, however, the term cannot be used as a wastebasket and true increased numbers of intraepithelial lymphocytes must be seen. Clinical and endoscopic correlations determine the significance of any pathologist comment on increased numbers of lymphocytes in the epithelium.
General Practice Pathology is a new regular column each authored by an Australian expert pathologist on a topic of particular relevance and interest to practising GPs. The authors provide this editorial, free of charge as part of an educational initiative developed and coordinated by Sonic Pathology.

Dr Daman Langguth
Clinical Articles iconClinical Articles

Coeliac disease is a common disorder affecting the gastrointestinal tract, secondary to an immunologic reaction to gluten. At present it can only be managed by lifelong avoidance of gluten, and thus presents a challenge for patients and their health care professionals.

Epidemiology

Coeliac disease was first characterised in the late 1940s with diarrhoea and failure to thrive in young children. The wartime shortage of wheat, and adoption of a gluten-free surrogate diet, allowed their symptoms to improve. When wheat was re-introduced into their diets their condition worsened again. Initially thought to be a rare disease of children, we now recognise coeliac disease to be prevalent in adults, including the elderly. Data from the UK reveal that the most common age group diagnosed is between 30 and 45, with more people over 60 than those under 16 years (Coeliac UK: www.coeliac.co.uk). The illness occurs in people of European, Turkish, Middle Eastern, Egyptian and Indian backgrounds. It appears to be rare in sub-Saharan Africa and South-East Asia. There is debate over mass screening in populations such as in the UK and Scandinavia, where the disease incidence approaches 1%. The Gastroenterological Society of Australia (GESA) recommends screening in persons with Type 1 diabetes mellitus, Down syndrome, Turner syndrome, immunoglobulin A (IgA) deficiency, or a family history of coeliac disease, where the condition may be as common as 1 in 10.

Immunopathology

The pathologic understanding of coeliac disease has advanced considerably over the past 10 years, although our understanding is still incomplete. In some individuals, when gluten is digested the peptides cross the intestinal mucosa where they are recognised by the mucosa-associated lymphoid tissue. Those individuals with HLA-DQ2 or -DQ8 are able to process the gluten peptides, resulting in presentation of gliadin/gluten peptides on the surface of antigen-presenting cells. Over 99% of coeliac patients have HLA-DQ2 or -DQ8, and homozygotes for DQ2/8 are more likely than heterozygotes to develop the disease, and more severely. For the peptides to be presented to T cells, they must first be deamidated by a ubiquitous enzyme, tissue transglutaminase (tTG). Tissue transglutaminase alters the gluten-derived peptide so that it remains in the binding site of the HLA molecule, and allows an immune response to occur against the enterocytes that carry the HLADQ2/8-gluten peptide complex. Tissue transglutaminase is present in an active form outside cells; its usual role is to help maintain the extra-cellular matrix. Several isoenzymes of tTG exist throughout the body, tTG2 being present in the GI tract. It is the presence of IgA antibodies to this enzyme— anti-tTG2 antibodies (hereafter ‘tTG antibodies’)—that have become the gold standard serologic marker for coeliac disease. It remains uncertain why antibodies to tTG develop in coeliac patients, although research suggests that tTG can become cross-linked to the gluten peptide and cause specific tTG antibodies to develop, through a process termed ‘epitope spreading’. Tissue transglutaminase antibodies have been shown to pre-date the development of the histologic changes of coeliac disease. It is clear that antibodies to tTG are not pathogenic in most patients, as many cells in the body contain similar tTG. However, in dermatitis herpetiformis, a disease long associated with coeliac disease, these antibodies develop against tTG3 (whereas in coeliac disease they are directed against tTG2). In dermatitis herpetiformis, these tTG3 antibodies may well be pathogenic, leading to classic cutaneous lesions.

Serologic testing

IgA tTG antibodies are now considered the gold standard in the detection of coeliac disease, giving a sensitivity of around 95%, and a specificity of around 90%. IgA tTG antibodies become negative 9–12 months after the introduction of a gluten-free diet. In children less than 2 years of age, IgA production is not mature and may result in false negative IgA tTG. This is especially true for those less than one year of age. At present, all serologic diagnoses should be confirmed by histologic diagnosis, as false positives can occur. Although several studies in children have indicated that very high IgA anti-tTG results may not need to be confirmed by biopsy, Australian guidelines indicate the need for histologic confirmation. IgG tTG antibodies may also be detected in coeliac patients, though they have similar problems to IgG anti-gliadin antibodies (AGA, discussed below), with a poor sensitivity and specificity, despite initial enthusiasm for their utility. Older serologic tests for coeliac disease were based on antibodies directed against gliadin—anti-gliadin antibodies (IgA AGA and IgG AGA). Like all food antibodies, they have relatively poor sensitivity (false negatives) and particularly poor specificity (false positives), especially given that they are a group of antibodies (polyclonal), rather than being directed against a single epitope. The indication for IgA AGA is very limited and should largely be consigned to history. However, these antibodies can be used to monitor early adherence to a gluten-free diet as they become negative 6–9 months after the diet is introduced. IgG AGA, however, remains of use in IgA-deficient patients in whom IgA tTG and IgA AGA are not produced. IgG against deamidated gliadin is of use in IgA-deficient patients in whom IgA tTG and IgA AGA are not produced. This is a modified test, using a gliadin peptide (small piece of protein) that had been altered to more closely resemble the natural peptide found in wheat. IgA deficiency is defined as ‘undetectable or barely detectable’ serum IgA. IgG AGA are also of use in children less than two years of age (and especially children under one), in whom the ability to produce IgA antibodies has not fully developed. All patients with IgA deficiency in whom coeliac disease is suspected should undergo a small bowel biopsy, regardless of the IgG AGA and other testing conducted. It is suggested they be referred to a gastroenterologist, as other diseases such as chronic giardia and autoimmune enteritis may occur. One theory to explain why IgA deficiency is associated with the development of coeliac disease is that IgA is involved in the neutralisation of foreign antigens at mucosal surfaces, and these deficient individuals have greater transmucosal passage of gliadin fragments. Another type of antibody, IgA endomysial antibodies, has also been used to test for the disease in the past. These antibodies were first detected in monkey oesophagus; it is now recognised that the antigen being detected by this method was tTG. These antibodies are highly specific (~ 100%) but have a slightly lower sensitivity (~ 90%) than IgA tTG. Endomysial antibodies are sometimes used in children under two years of age.

Tissue typing

In selected cases, HLA-DQ typing may be of benefit. In patients who are predisposed to the development of coeliac disease, a negative test would essentially rule out the diagnosis. A positive result, on the other hand, would not significantly alter the chance of the person having coeliac disease. In Down syndrome and Turner syndrome patients, this would alleviate the need for life-long screening. Tissue typing may be of value in infants (less than two years), to exclude disease, as serologic markers are less reliable. HLA-DQ typing in relatives of coeliac patients may also be of use, although they are highly likely to have DQ2/8 present, whether or not they also have the disease. As DQ2 is independently associated with IgA deficiency and Type 1 diabetes, tissue typing would be less beneficial in such cases.
General Practice Pathology is a new regular column each authored by an Australian expert pathologist on a topic of particular relevance and interest to practising GPs. The authors provide this editorial, free of charge as part of an educational initiative developed and coordinated by Sonic Pathology.
Dr Linda Calabresi
Clinical Articles iconClinical Articles

Most GPs of a certain vintage would have heard the old adage “if you don’t put your finger in, you put your foot in.” It refers of course to the digital rectal examination and its importance as part of a thorough physical examination especially when symptoms indicate some potential pathology in that area. However it would be fair to say that most doctors, let alone patients are not particularly enthusiastic about this particular test. Indeed you could almost hear the collective sigh of relief when the authoritative guidelines suggested regular DRE was not useful as a means of screening for prostate cancer. The downside of this change in recommendation and general avoidance behaviour is that one can become deskilled in this examination, potentially missing an opportunity to diagnose a variety of conditions from prostate abnormalities to cancer. In the latest MJA, Dr Christopher Pokorny from the South Western Sydney Medical School at UNSW gives a synopsis of indications for DRE and a run through of the appropriate technique. “About 25% of colorectal cancers occur in the rectum and up to half can be palpated, but accuracy depends on training, experience, examination technique and the length of the examining finger,” Dr Pokorny writes. His list of indications for the procedure include the more obvious symptoms such as PR bleeding or mucus, change in bowel habit and prostatic symptoms but also a history of faecal urgency, difficult defaecation, faecal incontinence and anorectal pain (with the caveat that DRE should be avoided if there is an obvious anal fissure). Placing the patient in the left lateral position for the procedure is recommended with the patient drawing their knees to their chest and assuming that the patient is safe from falling off the examination couch. Assessment is made of the skin around the anus – looking for fissures, fistulae, skin tags, skin diseases such as warts or psoriasis, abscesses and haemorrhoids. The well-lubricated, gloved finger is then gently inserted, rotated in a clockwise direction into the rectum. Dr Pokorny suggests a systematic examination of the rectal mucosa anteriorly, posteriorly and laterally for masses that should be described as soft, hard, irregular or smooth. Prostatic abnormalities in men and ovarian or uterine abnormalities in women may be noted being careful not to confuse a palpable cervix in a woman with a mass. Finally, the doctor needs to check for any blood, including malaena on the glove. Dr Pokorny does concede the value of this examination is limited by the body habitus of the patient, and the length of the examiner’s fingers. Nonetheless, it is unwise to miss this diagnostic opportunity in general practice. “DRE is an often neglected but important part of the physical examination and should be performed whenever symptoms suggest anorectal or prostatic pathology,” he concludes. MJA doi:10.5694/mja17.00373

Dr Linda Calabresi
Clinical Articles iconClinical Articles

Faecal transplantation has been gaining momentum as a mainstream treatment over recent years, but now a systematic review published in the MJA puts it ahead of antibiotics in effectiveness against Clostridium difficile-associated diarrhoea. The literature search examined all the randomised controlled trials on the topic up until February this year, including some recently published studies, and concluded there was moderate quality evidence that faecal microbiota transplantation is more effective in patients with Clostridium difficile-associated diarrhoea than either vancomycin or placebo. The review also found that samples that had been frozen and then thawed prior to transplantation were as effective as fresh samples. “Our systematic review also highlights the fact that frozen/thawed transplants – a more convenient approach that reduces the burden on a donor to supply a sample on the day it is needed – is as effective as fresh [faecal microbiota transplant],” the authors said. However, there was less clarity about the optimal method of administering the transplanted microbiota. “Our analysis indicates that naso-duodenal and colonoscopic application may be more effective than retention enemas, but this conclusion relies on indirect comparisons of subgroups,” they concluded suggesting that further research was needed to determine the best route of administration. There also needs to be more evidence into the most appropriate donor – whether they should be related, unrelated or anonymous, or whether ‘pooling stool from several donors’ would be the best way to go. “Over the past 20 years the worldwide incidence of [Clostridium difficile-associated diarrhoea] has more than doubled, and outbreaks have been associated with greater morbidity and mortality, although to a lesser extent in Australia,” the study authors said. Even though recent guidelines from Europe and North America now recommend these transplants to treat antibiotic-resistant Clostridium difficile-associated diarrhoea, the international authors of the review said these recommendations were based on relatively poor evidence. It is expected this systematic review that includes more scientifically robust clinical trials will inform future guidelines on the topic, particularly in Australia and New Zealand whose guidelines on treating Clostridium difficile-associated diarrhoea currently need updating. Ref: doi: 10.5694/mja17.00295